martes, 23 de noviembre de 2010

eliminadores de vibracion

DESCRIPCION:
Eliminadores de vibración construidos de acero corrugado inoxidable y cubierto por alambre trenzado de alta resitencia. Compatible con todos los refrigerantes CFC, HCFC y HFC; para aplicaciones de aire acondicionado, refrigeración y para aplicaciones de transporte refrigerado.
CARACTERISTICAS:
- Compatibles con todos los refrigerantes CFC, HCFC y HFC
- Unidades empacadas en cajas individuales
- Construidos de acero corrugado inoxidable, para incrementar la flexibilidad y la absorción de la vibración, cubierto por alambre trenzado de alta resistencia
- Reforzados con ferulas de cobre en ambos extremos
- Conectores de cobre hembra
- Todas las unidades se encuentran deshidratadas y selladas
- Aprobado y especificado por la mayoría de los fabricantes de compresores

APLICACONES:
Los eliminadores de vibración están diseñados para su instalación en las líneas de succión y descarga de los sistemas de aire acondicionados y refrigeración; utilizado también en aplicaciones de transporte refrigerado.

TIMER


viernes, 12 de noviembre de 2010

VALVULAS DE CONTROL

Categorías de válvulas.
Debido a las diferentes variables, no puede haber una válvula universal; por tanto, para satisfacer los cambiantes requisitos de la industria se han creado innumerables diseños y variantes con el paso de los años, conforme se han desarrollado nuevos materiales. Todos los tipos de válvulas recaen en nueve categorías: válvulas de compuerta, válvulas de globo, válvulas de bola, válvulas de mariposa, válvulas de apriete, válvulas de diafragma, válvulas de macho, válvulas de retención y válvulas de desahogo (alivio).
Válvulas de compuerta.
La válvula de compuerta es de vueltas múltiples, en la cual se cierra el orificio con un disco vertical de cara plana que se desliza en ángulos rectos sobre el asiento 

Válvulas de macho
La válvula de macho es de ¼ de vuelta, que controla la circulación por medio de un macho cilíndrico o cónico que tiene un agujero en el centro, que se puede mover de la posición abierta a la cerrada mediante un giro de 90°.





Válvulas de globo

Una válvula de globo es de vueltas múltiples, en la cual el cierre se logra por medio de un disco o tapón que sierra o corta el paso del fluido en un asiento que suele estar paralelo con la circulación en la tubería.

Válvulas de bola
Las válvulas de bola son de ¼ de vuelta, en las cuales una bola taladrada gira entre asientos elásticos, lo cual permite la circulación directa en la posición abierta y corta el paso cuando se gira la bola 90° y cierra el conducto.


Válvulas de mariposa
La válvula de mariposa es de ¼ de vuelta y controla la circulación por medio de un disco circular, con el eje de su orificio en ángulos rectos con el sentido de la circulación.


Válvulas de diafragma
Las válvulas de diafragma son de vueltas múltiples y efectúan el cierre por medio de un diafragma flexible sujeto a un compresor. Cuando el vástago de la válvula hace descender el compresor, el diafragma produce sellamiento y corta la circulación.


Válvulas de apriete
La válvula de apriete es de vueltas múltiples y efectúa el cierre por medio de uno o más elementos flexibles, como diafragmas o tubos de caucho que se pueden apretar u oprimir entre sí para cortar la circulación.



Válvulas de retención de elevación
Una válvula de retención de elevación es similar a la válvula de globo, excepto que el disco se eleva con la presión normal e la tubería y se cierra por gravedad y la circulación inversa.





Válvulas de desahogo (alivio)

Una válvula de desahogo es de acción automática para tener regulación automática de la presión. El uso principal de esta válvula es para servicio no comprimible y se abre con lentitud conforme aumenta la presión, para regularla.

La válvula de seguridad es similar a la válvula de desahogo y se abre con rapidez con un "salto" para descargar la presión excesiva ocasionada por gases o líquidos comprimibles.

El tamaño de las válvulas de desahogo es muy importante y se determina mediante formulas especificas.


FILTRO DESHIDRATADOR

Humedad en los Sistemas de Refrigeración

Es bien conocido el peligro que representa un exceso de humedad en los sistemas de refrigeración; ya que la humedad combinada con altas temperaturas, da origen a fenómenos complejos, sobresaliendo la formación de hielo en la válvula de termo expansión o en el tubo capilar, ácidos en refrigerante y aceite, lodo y hasta quemadura del motocompresor. Aun cuando el contenido de humedad no sea excesivo como para congelarse en la válvula de termo expansión o en el tubo capilar, de todos modos puede causar algunos de los otros problemas previamente mencionados y, puesto que todos estos efectos no pueden ser detectados de manera ordinaria, es importante el uso de filtros deshidratadores para mantener la humedad en un nivel seguro.


Tipos

Existen muchos materiales que tienen la capacidad de servir como agentes desecantes o deshidratantes, pero no todos son adecuados para utilizarse en refrigeración, ya que en estos sistemas, se requiere un material que remueva la humedad de la mezcla refrigerante-aceite, sin causar reacciones indeseables con estos compuestos o con otros materiales del sistema.

De entre los diferentes desecantes que remueven la humedad por el proceso de adsorción, los más comúnmente empleados en refrigeración son: sílica gel, alúmina activada y tamiz molecular.

Alúmina Activada.- Un sólido duro de color blanco, comúnmente en forma granular que no es soluble en agua. Además de su capacidad para retener agua, también tiene una excelente capacidad para retener ácidos. Generalmente no se utiliza en forma granular, sino que se tritura y se moldea en forma de bloque poroso, combinada con otro desecante para incrementar su capacidad de agua. Así, además de una gran capacidad para retener agua y ácidos, se proporciona filtración.


Sílica Gel.- Un sólido con aspecto de vidrio que puede tener forma granular o de perlas. No se disuelve en agua y tiene poco desprendimiento de polvo cuando se utiliza suelta. Tiene una capacidad aceptable para retener humedad. También se puede usar mezclada con otros desecantes para incrementar su capacidad de retención de agua, en forma granular (suelta) o moldeada en forma de bloque poroso.

Tamiz Molecular.- Es el más nuevo de los tres desecantes y ha tenido muy buena aceptación en la industria. Es un sólido blanco que no es soluble en agua. Su presentación común es en forma granular o esférica. Tiene una excelente capacidad de retención de agua, aunque menor que la de la alúmina activada para retener ácidos. Debido a lo anterior, es muy común combinar estos dos desecantes para balancear estas dos características: retener agua y ácidos. Esta mezcla generalmente es en forma de bloques porosos moldeados.

TUBERIAS COBRE Y PVC

Tuberías de cobre

Cuando se construye una casa o departamento el arquitecto o maestro mayor de obras nos harán una simple pregunta “¿Cómo querrá sus tuberías?”, y aquí la respuesta puede variar según cada persona. Por lo general, las instalaciones modernas se hacen con tuberías de cobre, debido a que es un material ligero, que suelda con facilidad y es de fácil manipulación. Además, dentro de sus aplicaciones, es útil para transporta tanto agua fría como caliente; podemos encontrar 2 tipos de tuberías de cobre. Los tubos de cobre recocidos o blandos, que se venden en las ferreterías en rollos de 50 metros y se caracteriza por ser una material moldeable. Y los tubos de cobre rígidos los cuales encontramos en forma de barras rectas de 5 metros, y como su nombre lo indica, son rígidos.

 Las tuberias de PVC ofrecen accesorios que optimizan el proceso de doblado y union de los caños ---------------------------------------------------------------------->

 

 

 

 

 

Cortar y doblar tuberías de cobre

Estas tuberías pueden doblarse y curvarse, y si lo hacemos correctamente podemos hasta evitar la instalación de codos; de todas maneras este trabajo debe realizarse con herramientas específicas para poder hacerlo con precisión. Necesitaremos fundamentalmente una trenza curvadora o un muelle de doblar; introduciremos la tubería de cobre en el interior del muelle y ejerciendo una simple presión sobre él, el tubo se cortará de forma sencilla sin aplastarse o deformarse. El cobre es un metal bastante blando y eso hace que sea fácil de cortar y moldear; para realizar un corte puede utilizarse una sierra para metales, o un cortatubos (este es mejor ya que evita una posible deformación en la tubería y hace que el corte sea más limpio). Se debe hacer un movimiento alrededor del tubo hasta cortarlo de forma completa, una vez que se hayan cortado, se deben limar para evitar las rebadas y a su vez las posibles pérdidas de presión

TUBERIAS

grosor común de las tuberías de cobre son el “tipo K”, el “tipo L” y el “tipo M”; El tipo “M” es relativamente barato y de paredes relativamente delgadas y generalmente conveniente para el condensado y otro drenaje, pero generalmente ilegal para los usos de la presión, el tipo “L” tiene una sección de pared más gruesa, y se utiliza para el abastecimiento y la presión de agua en residenciales y edificios comerciales, el tipo “K” tiene la sección de pared más gruesa de los tres tipos de tubería de presión clasificadas y es de uso general para las tuberías subterráneas de profundidad tal como aceras y calles inferiores, con una capa conveniente de protección anti-corrosivo o una manga continua del polietileno según los requisitos de código. En el mercado de la plomería el tamaño de la tubería de cobre es medido por su diámetro nominal (diámetro interior medio). Algunos negocios, técnicos en calefacción y refrigeración por ejemplo, utilizan el diámetro exterior (OD, siglas en inglés) para señalar tamaños del tubo de cobre. El OD del tubo de cobre es siempre 1/8 pulgada más grande que su tamaño nominal. Por lo tanto, 1 " tubo de cobre nominal y 1-1/8" de pulgada tubo ACR es exactamente el mismo tubo con diversas designaciones de tamaño. El grueso de pared del tubo, según lo mencionado arriba, nunca afecta el apresto del tubo. El tipo K el 1/2" tubo nominal, es del mismo tamaño que el tipo L el 1/2" tubo nominal (5/8 " ACR). Generalmente, los tubos de cobre se sueldan directamente en los accesorios de cobre o de latón, aunque la compresión, la encrespadura, o los accesorios de la flama también se utilizan. Antes, existían preocupaciones relacionadas con los tubos de cobre incluido el plomo usado (50% lata y 50% plomo) en la soldadura en los empalmes.



miércoles, 10 de noviembre de 2010

SEPARADOR DE ACEITE

Función: Separar el aceite que sale del compresor hacia el sistema conjuntamente con el gas refrigerante y devolverlo al cárter, particularmente en aquellos casos en que hay la posibilidad de un retorno deficiente de aceite al compresor. La forma primaria y natural como debe ser resuelto el retorno de aceite al compresor, es por el adecuado dimensionamiento y diseño de las tuberías de refrigeración, especialmente la de succión. 
Aplicaciones: Para sistemas de baja temperatura, para sistemas de temperatura media en que la unidad condensadora esté por arriba del nivel del evaporador y para aquellos sistemas con tuberías muy largas entre la UC y la UE, o de multi-circuitos como es el caso de supermercados. Para sistemas de aire acondicionado por lo general no es necesario, salvo alguna excepción. 
Localización: En la tubería de descarga, inmediato a la salida del compresor.

viernes, 5 de noviembre de 2010

valvula de expansion termostatica

Válvula de expansión termostática

 
Válvula de expansión termostática para R22 tipo TEX2 instalada en evaporador frigorífico.
Esquema en corte de una Válvula de expansión termostática con orificio fijo y sin línea de equilibrio de presión externa.
Válvula de expansión termostática modelo PHT
para alta presión.
Válvula de expansión termostática compensada externamente modelo TE5 para aplicaciones frigoríficas.
Montaje de VET con compensación externa y
bulbo sensor en evaporador.
Una válvula de expansión termostática (a menudo abreviado como VET o válvula TX en inglés) es un dispositivo de expansión el cual es un componente clave en sistemas de refrigeración y aire acondicionado, que tiene la capacidad de generar la caída de presión necesaria entre el condensador y el evaporador en el sistema. Básicamente su misión, en los equipos de expansión directa (o seca), se restringe a dos funciones: la de controlar el caudal de refrigerante en estado líquido que ingresa al evaporador y la de sostener un sobrecalentamiento constante a la salida de este. Para realizar este cometido dispone de un bulbo sensor de temperatura que se encarga de cerrar o abrir la válvula para así disminuir o aumentar el ingreso de refrigerante y su consecuente evaporación dentro del evaporador, lo que implica una mayor o menor temperatura ambiente, respectivamente.
Este dispositivo permite mejorar la eficiencia de los sistemas de refrigeración y de aire acondicionado, ya que regula el flujo másico del refrigerante en función de la carga térmica. El refrigerante que ingresa al evaporador de expansión directa lo hace en estado de mezcla líquido/vapor, ya que al salir de la válvula se produce una brusca caída de presión producida por la "expansión directa" del líquido refrigerante, lo que provoca un parcial cambio de estado del fluido a la entrada del evaporador. A este fenómeno producido en válvulas se le conoce como flash-gas.

tipos de motores electricios

1.

 Motores de corriente continua

Diversos motores eléctricos.
Los motores de corriente continua se clasifican según la forma como estén conectados, en:
Además de los anteriores, existen otros tipos que son utilizados en electrónica:

 Motores de corriente alterna

Artículo principal: Motor de corriente alterna
Los motores de C.A. se clasifican de la siguiente manera:
 Asíncrono o de inducción
Los motores asíncronos o de inducción son aquellos motores eléctricos en los que el rotor nunca llega a girar en la misma frecuencia con la que lo hace el campo magnético del estator. Cuanto mayor es el par motor mayor es esta diferencia de frecuencias.

 Jaula de ardilla

Un rotor de jaula de ardilla es la parte que rota usada comúnmente en un motor de inducción de corriente alterna. Un motor eléctrico con un rotor de jaula de ardilla también se llama "motor de jaula de ardilla". En su forma instalada, es un cilindro montado en un eje. Internamente contiene barras conductoras longitudinales de aluminio o de cobre con surcos y conectados juntos en ambos extremos poniendo en cortocircuito los anillos que forman la jaula. El nombre se deriva de la semejanza entre esta jaula de anillos y barras y la rueda de un hámster (ruedas probablemente similares existen para las ardillas domésticas)
Artículo principal: Jaula de ardilla


 Monofásicos
  • Motor de arranque a resistencia. Posee dos bobinas una de arranque y una bobina de trabajo.
  • Motor de arranque a condensador. Posee un capacitor electrolítico en serie con la bobina de arranque la cual proporciona más fuerza al momento de la marcha y se puede colocar otra en paralelo la cual mejora la reactancia del motor permitiendo que entregue toda la potencia.
  • Motor de marcha.
  • Motor de doble capacitor.
  • Motor de polos sombreados o polo sombra.
 Trifásicos
  • Motor de Inducción.
A tres fases
La mayoría de los motores trifásicos tienen una carga equilibrada, es decir, consumen lo mismo en las tres fases, ya estén conectados en estrella o en triángulo. Las tensiones en cada fase en este caso son iguales al resultado de dividir la tensión de línea por raíz de tres. Por ejemplo, si la tensión de línea es 380 V, entonces la tensión de cada fase es 220 V.
Véase también: Sistema trifásico

 Rotor Devanado

El rotor devanado o bobinado, como su nombre lo indica, lleva unas bobinas que se conectan a unos anillos deslizantes colocados en el eje; por medio de unas escobillas se conecta el rotor a unas resistencias que se pueden variar hasta poner el rotor en corto circuito al igual que el eje de jaula de ardilla.
Monofásicos
  • Motor universal
  • Motor de Inducción-Repulsión.
 Trifásico
  • Motor de rotor devanado.
  • Motor asíncrono
  • Motor síncrono

 Síncrono

En este tipo de motores y en condiciones normales, el rotor gira a las mismas revoluciones que lo hace el campo magnético del estator.